Hominids.

Robert Sawyer’s name might be more familiar to those of you who watched the short-lived ABC series Flash Forward, based on his novel of the same name, but his one Hugo Award for Best Novel came four years after that book with Hominids, the first book in a trilogy that posits a parallel universe where Neanderthals won the evolutionary battle over Cro-Magnons and have since become the dominant species on their version of Earth.

The two parallel Earths are joined briefly during a quantum computing experiment gone awry in the Neanderthals’ universe, opening a portal that rather rudely deposits Neanderthal physicist Ponder Boddit in our world, smack in the middle of an underground heavy-water tank at the Sudbury Neutrino Observatory. If that name sounds familiar, it’s because it’s real, located in the Creighton nickel mine a bit north of Lake Huron, and the director of the neutrino-detection experiment just won the 2015 Nobel Prize in Physics earlier this month. Sawyer grounds everything in the Homo sapiens world in reality, using real place and brand names, although some of them (Palm Pilot? Handspring?) already sound comically out of date.

Boddit’s appearance in our world and sudden, unexplained disappearance in his creates two separate storylines: one here, focusing on the mystery of his arrival and the very short-term impact on him from a substantial shock to the system; and one there, where his coworker and sort of life-partner (sexual orientation in Sawyer’s Neanderthal world is fluid) Adikor Huld finds himself accused of murder because he was the only one present when Boddit left the building. The latter story ends up the more interesting one despite what would appear to be a simpler premise, as Sawyer uses it to explore both the Neanderthals’ culture and the individual personalities of several characters, primarily Adikor himself. Boddit’s adventure on our side – which, it is clear from the beginning, can only end properly with the opening of a new portal and his return to “his” earth – feels rushed and somewhat rote, as if Sawyer had a sort of checklist of things he wanted to cover and felt compelled to hit them all.

For example, Sawyer has made the Neanderthals a nontheistic and nonreligious society, primarily to set up a scene where he attacks the Catholicism of the main female character, Mary Vaughn, who develops feelings for him during the few days they spend together; it feels forced, and a bit unlikely that the entire culture of Neanderthals would be without religion even before it had a scientific explanation for the existence of the universe or of consciousness. Mary’s character herself is also problematic – her first appearance on the pages is as a rape victim, which serves no purpose within the novel as a whole except possibly to make her more open to seeing Boddit as a fellow human because he is, in our terms, more of a “gentleman.”

Sawyer’s Neanderthals fall too much into the “noble savage” cliché, as their universe has no war, pollution, poverty, or even crime, with a global population of just over 150 million and all citizens equipped from birth with a Companion, an electronic device implanted in the wrist that measures vital signs and records locations, movements, and actions for later storage. It’s a crime-prevention device, a walking encyclopedia, and a near-complete abrogation of individual privacy in the Neanderthals’ Marxist society. It’s also terribly convenient because it allows Boddit to communicate with the people who find him on our side of the portal within a matter of hours, as the Companion can “learn” English and translate for him. (Granted, without that, the book would be a very frustrating read and probably quite boring.)

The two plots are so thin, in fact, that Hominids feels more like an extended prologue for another story than like a standalone novel. While Sawyer’s explanations of quantum mechanics and the existence of this second, parallel universe are quite clever and mostly grounded in real science, once he gets Boddit here, not a whole lot happens either in terms of action on the pages or exploration of the many ramifications of such a discovery, both scientific and anthropological.

Oh, by the way: Not that anyone should take my predictions seriously, but I’ll say Mets in 5.

Next up: Graham Greene’s first novel, The Man Within.

Three history of science books.

I have one new post up on ESPN.com, on prep lefty Brady Aiken, the top prospect right now for this year’s Rule 4 draft.

I’ve listened to three history of science audiobooks in the last month, two of which became more relevant in the wake of Monday’s announcement of a discovery of evidence relating to the initial moments after the Big Bang. Of those three books, one was excellent, one was disappointing, and one had a little bit of both.

By far my favorite of the three was Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science, a book about the discovery of quantum mechanics and the difficulty the theory’s proponents had in convincing the advocates of the standard model of physics – a group that included Einstein and Bohr – that God does indeed play dice, at least with subatomic particles. The book is thorough, speaking as often as possible through the words of its many characters, while making a complex scientific subject easily accessible to lay readers who, like me, may not have taken a physics class in 20+ years.

The book builds up to Werner Heisenberg’s famous uncertainty principle, and then deals with the massive fallout (pun intended) from the theorem’s introduction and subsequent examinations within a skeptical physics community. The principle is popularly interpreted to mean that we cannot simultaneously know the location of a subatomic particle and its velocity, but that oversimplifies it a bit. Heisenberg actually argued that the more accurately we can measure the position of a particle, the less accurately we can measure its momentum. This is separate from the observer effect, also discussed by Heisenberg, which states that the act of observing a particle alters the characteristics of that particle that the observer is attempting to measure. The uncertainty principle itself is critical to the understanding of quantum mechanics and measuring the behavior of subatomic particles after the demise of the “predictable” model of classical physics. This uncertainty is an inevitable result of the fact that every particle in the universe is also a wave, which is where Herr Schrödinger comes into play.

Uncertainty has to deal with a lot of phenomena that aren’t covered in high school physics classes, and some that are but might be unfamiliar, such as the discovery that electrons do not in fact orbit the nucleus of an atom as planets in the solar system do. The book also has the best explanation I’ve come across of the paradox of Schrödinger’s cat, as the physicist himself looms large in the early days of the theory and refinements of quantum mechanics. The paradox was Schrödinger’s response to the seemingly impossible claim of the quantum theorists that a subatomic particle could simultaneously exist in multiple “states.” Schrödinger’s cat existed in a box where a canister of poison would open with the release, at some arbitrary point in time, of a single particle. He argued that if quantum mechanics were true, the cat would simultaneously be alive and dead – at least until the observer opened the box, at which point the cat would clearly have to move entirely to one state (alive) or the other (dead). This paradox sidestepped the question of whether quantum characteristics of subatomic particles do or should apply equally to relatively large objects, but the paradox has led to multiple interpretations, from the slightly insane (the Copenhagen interpretation, where observing the object ends the superposition of multiple states) to the totally insane (the many-worlds interpretation, where observing the object splits the universe into two universes and I can’t even continue with this). I’ve always understood it as a probabilistic model: The cat is only “half alive and half dead” in a mathematical sense, as in 1/2(alive) + 1/2(dead). No one can seriously argue that the cat exists in two superposed states until we open the box, right?

Lindley’s greatest trick here is to present the various scientists involved in the debate over quantum phenomena, particularly Heisenberg, Bohr, Einstein, and Schrödinger, as full-fledged individuals, capable of insight, humor, doubt, and even pettiness. Heisenberg’s postulate threw a huge wrench into the well-oiled machine of classical physics, where the behavior of particles was thought to be predictable and well-understood. Heisenberg didn’t just say that their behavior was unpredictable, but that it could never become predictable, and that there was an upper bound on our ability to observe and understand the behavior of certain subatomic particles.

The second book of the three, the one on which I’d put a middling grade, was Ray Jayawardhana’s Neutrino Hunters: The Thrilling Chase for a Ghostly Particle to Unlock the Secrets of the Universe*, about the lengthy and difficult question to understand these particular subatomic particles, ones that seemed to also defy conventional wisdom on how such particles should behave. Neutrinos are almost massless and can pass through an entire planet without touching another particle. They also explain the full process involved in beta decay, where an atomic nucleus emits an electron or a positron as well as electron neutrino (or antineutrino, but hold that thought). Without the neutrino to balance the scales, physicists were left with an apparent loss of momentum and energy from beta decay. As it turns out, the Italian physicist Wolfgang Pauli wasn’t just making stuff up when he posited the existence a previously unknown particle, which another Italian physicist, Enrico Fermi, dubbed the “neutrino,” or “little neutron.”

* Subtitles have gotten completely out of control.

Jayawardhana starts off with a brisk history of physicists’ understanding of the atom and radioactive decay, getting us fairly quickly to Pauli and the stir that his hypothesis created in the world of nuclear physics. Undiscovered particles are always good fun in that realm, but Pauli’s subatomic idea was a naughty bit, appearing to have no mass, possibly having no charge (but having “spin,” tying to Pauli’s other great contribution to science, for which he later won a Nobel Prize), and defying decades of attempts to find it. Pauli’s guess was right, as the neutrino did exist, but wasn’t discovered until 26 years after his first paper describing it, and physicists continue to build larger and more expensive contraptions to capture enough neutrinos to try to better understand them, graduating from capturing solar neutrinos (emitted during the nuclear fusion that powers the star) to those that reach us from distant supernovae. Neutrinos also gave rise to our understanding of the weak interaction, one of the four fundamental forces of nature, and are one of the handful of remnants left over from the Big Bang still hanging around the background fabric of the universe.

When Jayawardhana is explaining the “invention” of the neutrino, its formation, and the various “flavors” of neutrinos now known to science, he keeps the material moving and strikes the ideal balance between rigor and accessibility. But the last third of the book bogs down in descriptions of those enormous devices used to try to catch the little sneaks, and the lengthy efforts involved in funding those experiments and waiting for results. The discussion of why neutrinos matter suffers in comparison for its brevity, when in fact that’s the topic that deserved greater explanation. The revelation that neutrinos may actually serve as their own antiparticles is just thrown in near the end of the book, even though that’s kind of a big deal. Jayawardhana also falls into the trap of dismissing the paradox of Schrödinger’s cat by saying, without any explanation, that the cat is simultaneously alive and dead inside of the box, an interpretation that, even if you accept it, isn’t the only one out there.

Unrelated to the book itself, the audiobook was narrated by Bronson Pinchot, so if you’ve always wanted to hear Balki talk to you about double beta decay, here’s your chance.

The disappointment was Dava Sobel’s A More Perfect Heaven: How Copernicus Revolutionized the Cosmos, a description of Copernicus’s earth-shattering (pun intended) discovery that the earth revolves around the sun, not, as the Catholic Church decreed, that the universe revolves around the earth. Copernicus also pointed out that the stars are much farther away from earth than scientists of his era believed them to be. Sobel’s book paled in comparison to her wonderful debut, Longitude, but also suffers from the paucity of original source material, as Copernicus left little besides his On the Revolutions of the Celestial Spheres, and after his death the work was condemned by the very church he’d once served as a canon.

To fill in the gap, Sobel resorts to a dubious technique of imagining dialogues between several of the major players in the drama, incorporating a short play in the middle of her more serious work. Historical fiction itself is problematic enough when the author puts words or actions with real historical figures, but Sobel’s device here seems unconscionable. That we know so little of Copernicus’ life beyond his magnum opus is lamentable, but it is no excuse for fabricating an entire personality for him and others involved in the story of his discovery, such as making Georg Rheticus, the mathematician who published On the Revolutions, into a pederast. Expanding the tome to discuss Johannes Kepler, who built on Copernicus’ work and discovered that planetary orbits are elliptical rather than circular, at greater length would have been a better use of the space.

I’ll apologize here for any errors in my descriptions of the physics explained in these books. Please submit any corrections or clarifications in the comments.