Ada’s Algorithm.

My top 50 free agent rankings went up Friday for Insiders, following by the “deleted scenes” post with capsules on four guys whom I wrote about before their employers picked up their club options. I’ve also got buyers’ guides to catchers and to corner infielders up, with middle infielders due on Tuesday.

Everything seems to be coming up Ada Lovelace lately; largely overlooked in her own time because she was a woman in the early Victorian era and was better known as the one legitimate offspring of the rake Lord Byron, she’s now widely recognized as the creator of the first machine algorithm, the primary ancestor of the modern computer program. The Department of Defense named a programming language (Ada) after her in the early 1980s, and she’s appeared in numerous works of fiction (such as William Gibson’s The Difference Engine) and non-fiction (including a brand-new short work aimed at schoolchildren called Ada Byron Lovelace and the Thinking Machine) over the last 25 years. Since my daughter was working on a short presentation on Lovelace – all the kids were asked to pick a scientist, and she was pissed off because there was only one woman (Marie Curie, of course) on the original list of assignments – I picked up James Essinger’s 2014 biography, Ada’s Algorithm: How Lord Byron’s Daughter Ada Lovelace Launched the Digital Age, which had most of the key details but is padded with a lot of less critical material.

Ada Lovelace’s place in history comes from her friendship with Charles Babbage, who designed (but never built) the first computers, one called the Difference Engine, of which he built one-seventh, and another called the Analytical Engine, which he never built at all due to the prohibitive cost and lack of manufacturing facilities capable of building all of the cogswheels the device required. Babbage was a bit of a mad scientist, prone to emotional outbursts and self-destructive arguments that cost him any shot to gain the funds necessary to build even part of either Engine beyond what he built. He also lacked Ada’s communications skills, and when the Italian mathematican (and later Prime Minister of Italy) Luigi Federico Menabrea wrote a paper describing Babbage’s Analytical Engine, Lovelace translated it into English and supplemented it with her own Notes, the latter of which ran more than twice as long as Menabrea’s original article, and included the algorithm that earned her posthumous fame. She saw the potential of Babbage’s machine that even Babbage did not – that programmers could use it to solve all kinds of mathematical problems beyond mere arithmetic, as long as the programmer could conceive the necessary series of steps for the calculations.

Lovelace died of uterine cancer at 36, and much of the detail of her life is lost both to time and, it’s believed, to her mother’s decision to destroy much of Ada’s correspondence after the latter’s death. Even many of the letters she exchanged with Babbage are gone, leaving any biographer with relatively meager material from which to construct a story of her life. Essinger barely makes it past 200 pages, and even to get to that point he has to fill with material that’s not all that relevant to the reader primarily interested in Ada’s Notes and the algorithm of the book’s title. For example, we don’t need two chapters on Lord Byron, and I was certainly glad I got the book away from my daughter (who found it boring anyway) before she got to the mentions of his incestuous relationship with his half-sister Augusta or the story of how his nanny would take him into her bed, masturbate him, and then later turn around and beat him, often doing both things in the presence of her friends. (That material would seem essential in any biography of Byron himself, though, since it probably explains his later promiscuity and other “immoral” behavior relative to the mores of the era.) Byron was out of Ada’s life for good while she was still an infant, and including such details on his life seems more than just out of place but almost pandering.

Essinger gives us too much of the text of some of her less relevant letters, and inserts his own speculation on things like whether she might have met certain personages of the era, like Charles Darwin, or whether Babbage was in love with Ada, for which there’s no tangible evidence. The first hardcover edition also has numerous typos and minor errors in the text – for example, using “inconceivable” when he meant “conceivable,” which is kind of a weak word anyway – that further added to my impression that I was reading Essinger’s thoughts and opinions rather than a narrative rendering of her life. It seems that we don’t know enough about Ada Lovelace for a full biography, but that doesn’t quite justify surrounding what we do know with speculation or tangential details.

Next up: Speaking of Gibson, I’m reading Mona Lisa Overdrive, the third book in his Sprawl trilogy, which began with the Hugo-winning Neuromancer.

Incompleteness.

My final top 100 draft prospect ranking for 2015 is up for Insiders, and my latest review for Paste covers the Temple of Elemental Evil boardgame.

Rebecca Goldstein’s Incompleteness: The Proof and Paradox of Kurt Gödel, part of the same “Great Discoveries” series that includes David Foster Wallace’s Everything and More: A Compact History of Infinity, takes the abstruse topic of Gödel’s two incompleteness theorems and folds it into a readable, compelling biography of both the man and his ideas. Using the logician’s friendship with Albert Einstein as a hook, Goldstein gives us about as intimate a portrait of the intensely private Gödel as we can get, while also laying the groundwork so the non-metamathematicians among us can understand the why and how of Gödel’s theorems.

There’s very little actual math involved in Incompleteness, because the two theorems in question revolve around the nature of mathematics, notably arithmetic, as an axiomatic system that mathematicians and philosophers of the early 1900s were trying to use as a basis to describe arithmetic as a formal system – that is, one that can be fully described via a system of symbols and syntax, used to construct well-formed formulas (wffs, not to be confused with wtfs), some of which are the axioms that define the whole system. If such axioms can describe the entire system in a way that an algorithm (which is probably easiest to conceive as a computer program) can use those axioms and only those axioms to prove all truths or assertions about the natural numbers, then arithmetic would be considered a complete system, something Gödel proved was impossible in his first theorem. His second theorem went even further, showing that such a system of arithmetic also could not be consistent within itself by demonstrating that a statement of the system’s consistency would generate an internal contradiction.

Gödel imself was an incomplete figure, a hypochondriac who degenerated into outright paranoia later in life, and a socially awkward man who would likely have been diagnosed in today’s world of psychiatry and medicine as a depressive or even somewhere on the autism spectrum. He formed few lasting friendships, feared that no one could understand him (and given the meandering paths of his mind, I don’t doubt this was true), and was often shockingly aloof to what was happening around him. He fled his native Austria before World War II, even though he wasn’t Jewish, because his association with the secular Jewish scholars of the Vienna Circle (most of whom were logical Positivists, arguing that anything that could not be empirically proven could not be considered true) cost him his university position. Yet he remained unaware of the state of affairs in his native country, once (according to Goldstein) asking a Jewish emigré who had fled Nazi persecution for the United States, “What brings you to America?”

Goldstein does a superb job setting the scene for Gödel’s emergence as a logician/metamathematician and as a figure of adulation and controversy. The Vienna Circle was, in Goldstein’s depiction, somewhat insular in its unwavering acceptance of Positivism, and as such certain that Hilbert’s second problem, asking for a proof that arithmetic is internally consistent, would be proven true. Gödel’s second theorem showed this was not the case, leading to his own intellectual isolation from thinkers who were heavily invested in the Positivist view of mathematics, a bad outcome for a man who was already prone to introversion and diffidence. G&omul;del found it difficult to express himself without the use of logic, and while his station at Princeton’s illustrious Institute for Advanced Study – a sort of magnet think tank that became a home for great scholars in math and the sciences – put him in contact with Albert Einstein, it also deepened his solitude by limiting his orbit … although that may have been inevitable given his late-life delusions of persecution. Goldstein did encounter Gödel once at a garden party at Princeton, only to see him at his most gregarious, holding court with a small group of awestruck graduate students, only to disappear without a trace when his spell of socializing was over. He was, in her description, a phantom presence around campus, especially once his daily walks with Einstein ended with the latter’s death in 1955.

While giving a basic description of Gödel’s theorems and proofs, focusing more on their implications than on the underlying math, Goldstein does send readers to the 1958 Gödel’s Proof, a 160-page book that attempts to give readers a more thorough understanding of the two theorems even if those readers lack any background in higher math. Incompleteness focuses instead on the man as much as it does on his work, producing a true narrative in a story that wouldn’t otherwise have had one, making it a book that I could recommend to anyone who can stand Goldstein’s occasional use of a $2 word (“veridical”) when a ten-cent one (“truthful”) would have done.